
AIP/123-QED

A super-resolution technique to analyze single-crystal inelastic neutron scattering1

measurements using direct-geometry chopper spectrometersa)
2

Jiao Y. Y. Lin,1, b) Gabriele Sala,1 and Matthew B. Stone2
3

1)Spallation Neutron Source Second Target Station, Oak Ridge National Laboratory,4

Oak Ridge, Tennessee 37831, USA5

2)Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge,6

Tennessee 37831, USA7

(Dated: 9 January 2022)8

Direct-geometry time-of-flight chopper neutron spectroscopy is instrumental in studying9

dynamics in liquid, powder, and single crystal systems. We report here that real-space10

techniques in optical imagery can be adapted to obtain reciprocal-space super resolution11

dispersion for phonon or magnetic excitations from single-crystal neutron spectroscopy12

measurements. The procedure to reconstruct super-resolution energy dispersion of excita-13

tions relies on accurate determination of the momentum and energy-dependent point spread14

function, and a dispersion correction technique inspired by an image disparity calculation15

technique commonly used in stereo imaging. Applying these methods to spinwave dis-16

persion data from a virtual neutron experiment demonstrates ∼5-fold improvement over17

nominal energy resolution.18

a) This manuscript has been authored by UT-Battelle, LLC, under contract DE-AC05-00OR22725 with the US De-

partment of Energy (DOE). The US government retains and the publisher, by accepting the article for publication,

acknowledges that the US government retains a nonexclusive, paid-up, irrevocable, worldwide license to publish or

reproduce the published form of this manuscript, or allow others to do so, for US government purposes. DOE will

provide public access to these results of federally sponsored research in accordance with the DOE Public Access

Plan (http://energy.gov/downloads/doe-public-access-plan).
b)Electronic mail: linjiao@ornl.gov

1



I. INTRODUCTION19

Inelastic neutron scattering (INS) is a powerful probe of fundamental excitations in solids, in-20

cluding those of vibrational or magnetic origins. Neutron scattering from these excitations are21

characterized by the 4-dimensional (4D) scattering function, S(Q, E), where Q is the momentum22

transfer and E the energy transfer. In recent years the use of highly pixelated detector arrays in23

conjunction with direct-geometry chopper spectrometer (DGS) instruments1–7 has allowed for ef-24

ficient measurements of single crystal 4D S(Q, E) functions over large ranges of Q and E. One25

single measurement of a single-crystal sample at a DGS instrument captures the sample scattering26

function S(Q, E) on a 3-dimensional(3D) manifold in the 4D Q, E space. Typically, a sample is27

rotated around a single axis, while maintaining a single wavelength (i.e. monochromatic energy)28

of incident neutrons, to scan the 4D Q, E volume. A series of 3D manifolds measured during29

the scan are then combined into the volumetric 4D dataset, allowing for extracting 2D slices at30

high-symmetry Q directions by using software packages such as Mantid 8, Horace 9, DAVE 10,31

Mslice 11, and Utsusemi 12. This is done by integrating the measured scattering intensity along32

two of the four dimensions, yielding a scattering intensity as a function of the remaining two33

dimensions. Most often this is done to extract dispersion relations of fundamental excitations34

within crystalline solids by illustrating measured scattering intensity as a function of energy trans-35

fer along the vertical axis and a single direction in wave-vector transfer along the horizontal axis.36

These extracted dispersion data can be used to directly compare to model calculations of the ma-37

terials dynamics in order to constrain or refine parameters in a model (i.e. the Hamiltonian). For38

magnetic systems, SpinW 13 is often used to fit spin-wave models to the experimentally obtained39

dispersion along multiple high-symmetry directions simultaneously. This allows one to obtain ex-40

change parameters or other energy dependent terms in a model Hamiltonian which can represent41

the spin dynamics of the system.42

Quantifying a crystalline material’s vibrational or magnetic dispersion is key to understanding43

the system’s dynamics. The accuracy of the measured dispersion (and that of the inferred quan-44

tities which define the dynamics such as exchange couplings or force constants) obtained from45

DGS experiments are bound by the instrument resolution. However, a significant number of mea-46

surements do not take into account instrumental resolution effects beyond the use of an analytical47

approximation of a single energy and wave-vector resolution of the instrument. DGS instrument48

resolution for the S(Q, E) scattering function is four-dimensional, and the effects of the resolu-49
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tion function is compounded by the slope and the curvature of the dispersion surface, making it50

cumbersome to accurately model. Given a set of instrument and experimental parameters such51

as chopper settings and the sample shape, the resolution function for DGS neutron scattering in-52

struments still varies at different (Q, E) points in the measured dynamical range. This resolution53

ellipsoid varies considerably across the detector array of the instrument as well as energy transfer.54

Furthermore, the resolution ellipsoid can have significant tilt that can lead to focusing and defo-55

cusing effects in the measured dispersion depending upon the slope of the dispersion relative to the56

tilt. This can make it difficult to accurately extract a model based upon the measured dispersions.57

Recently it was demonstrated14 that some super-resolution imagery techniques can be adapted58

to improve energy resolution in a phonon density of states measurement, g(E), based upon neutron59

scattering techniques. This analysis was performed upon a measurement of the phonon density of60

states as a function of a single independent variable, energy transfer, which is a routine measure-61

ment for direct geometry chopper spectrometers measuring powder samples. In this work we in-62

troduce a super-resolution technique to improve the ability of extracting dispersion from inelastic63

neutron scattering measurements of single crystal samples. We use techniques inspired by image64

correlation methodologies to improve extraction of information from measurements as a function65

of two independent variables, energy and wave-vector transfer.66

II. METHODS67

A. Overview68

Dispersion relations are obtained from single crystal measurements at DGS instruments by69

extracting slices of scattering intensity as a function of energy transfer, E, and wave-vector transfer,70

Q, along high-symmetry directions in reciprocal space. These slices are obtained by integrating a71

portion of the measured reciprocal space along the two orthogonal reciprocal space directions to72

the direction of interest in the chosen slice. Constant Q cuts through these 2D slices can then be73

extracted by integrating a portion of the slices along wave-vector transfer and plotting the resulting74

scattering intensity as a function of energy transfer. For each constant Q cut through a single 2D75

slice, centers of peaks in the energy spectrum are recorded as the excitation energies for this76

particular Q value. The energy of these peak centers plotted as a function of Q are the measured77

dispersions. An analytic or numerical model of the dispersion can then be directly compared to78
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the experimentally determined dispersion values in order to determine model parameters. This is79

often done using non-linear curve fitting algorithms. This methodology of extracting dispersion80

parameters based upon peak location does not account for instrumental energy or wave-vector81

resolution. Such quantities may shift or skew peak locations and therefore would serve to skew any82

model parameters determined from comparison of peak positions to model dispersion. The method83

we present here calculates resolution based corrections to the measured dispersion functions.84
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FIG. 1. Super-resolution dispersion workflow. An experimental dispersion (open circles in panel B and

D) is first obtained from an experimental slice (panel A). This has been routinely done in single crystal

DGS data analysis by finding the peak centers, E j, of the constant q-cuts, I(E; q j), to form the dispersion

data points {(q j, E j)}. The experimental dispersion is then fit to a dispersion model (an example is shown

in panel C) to obtain modelled dispersion (the blue curve in panel D). This preliminary fitting provides a

good starting point for the model parameters near the optimal values, and the subsequent steps will make

super-resolution corrections. Resolution functions are calculated across the dynamical range of a slice

(see panel E). The dispersion model (panel C) with the parameters obtained from fitting done in panel D

is convolved with the resolution (panel E) to obtain a modelled slice (panel F). The disparity (panel G)

between the modelled slice (F) and the experimental slice (A) is then calculated. Finally, the disparity (G)

is used to correct the modelled dispersion (D) and obtain the corrected dispersion (panel H). The units of q

are reciprocal lattice units (r.l.u.).

Figure 1 shows the steps of this dispersion correction workflow. An experimental slice is first85

obtained from data reduction (Figure 1A). A dispersion dataset is then obtained directly from the86

experimental slice, Eexp;0(q), following the normal steps outlined earlier. This quantity is shown87
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as open symbols in Figure 1B. Those excitations are then fit to a dispersion model (in this case the88

spinwave model generated in SpinW) and relevant parameters (in this case exchange parameters)89

are obtained (Figure 1A, 1B, 1C, and 1D). The scattering cross section as a function of momentum90

transfer and energy transfer, including both the dispersion relation and the scattering amplitude, is91

now determined by the excitation model and relevant parameters. The next step is to obtain the92

instrument resolution function (Figure 1E). This can be achieved by using analytical calculations93

(This is often done for triple axis spectrometers15–18) or Monte Carlo neutron ray tracing simula-94

tions. More details can be found in section II B. By convolving the calculated scattering function95

with the instrument resolution function we can obtain the modelled slice (Figure 1F). Then we96

can compare the modelled slice and the experimental slice and obtain the energy shifts, ∆E(q)97

(Figure 1G), required to match the modeled slice to the experimental slice. This step is key to98

the super-resolution dispersion determination, and is further explained in section II C. The energy99

shifts obtained can then be applied to the model dispersion curve (from first fit to the experimental100

data) to obtain corrected dispersion curve (Figure 1H).101

Eexp;1(q) = Emodel;0(q)+∆E(q) (1)102

The focus of this work is to demonstrate that measured dispersion relations can be corrected tak-103

ing into account resolution effects, but a natural further step is to fit the dispersion model to the104

corrected dispersion, Eexp;1(q), to obtain the corrected parameters for the Hamiltonian.105

B. Resolution calculation and convolution106

The 4D resolution function for a DGS instrument in measurements of single-crystal samples107

has been modelled analytically19,20, using covariance matrix to simplify the treatment. It has also108

been calculated using Monte Carlo ray-tracing simulations21–25, and was sometimes approximated109

using Gaussian functions when it was used in resolution convolution26. However, these corrections110

are not often taken into account in 4D DGS data analysis due to the complexity of the resolution111

convolution, and the computing resources required for fitting the dispersion model obtained from112

a highly pixelated detector array.113

Incorporating resolution in the single crystal dispersion fitting workflow is difficult because:114

• The resolution is 4D in nature, thus requiring a four-dimensional integration to convolve it115

with a model S(Q,E).116
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• The resolution function varies across the dynamical range, depending on the momentum117

and energy transfer. For example, as the energy transfer increases the energy resolution118

broadening decreases for direct geometry chopper spectrometers119

• The resolution ellipsoid can have significant tilt that can lead to focusing and defocusing120

effects in the measured dispersion depending upon the slope of the dispersion relative to the121

tilt of the resolution ellipsoid.122

• For some DGS instruments the energy resolution function is asymmetric as a result of the123

moderation process peculiar to neutron production in spallation neutron sources27.124

The last point here has very rarely been taken into account previously in single crystal dispersion125

fitting. Further, to fit the dispersion model incorporating the instrument resolution requires multi-126

ple evaluation of the dispersion model with varying parameters, as well as resolution convolution127

with the model for each set of parameters. The number of iterations depends on the optimization128

algorithm used and how close the initial guess was to the optimal model parameters. Such an129

optimization procedure can be demanding in both programming and computing resources.130

The super-resolution procedure outlined in this work is agnostic to the technique of resolution131

calculation and convolution. In this work we have chosen to use a technique based on the Monte132

Carlo ray tracing simulation to illustrate the super-resolution methodology.133

The MCViNE package22,28 has been used to compute the resolution function for single crystal134

measurements at DGS instruments22,24,25. The procedure is reused here to simulate the resolution135

function (or point-spread function). The simulation starts with a beam simulation that matches136

experimental conditions such as incident energy and chopper settings. In order to calculate the137

energy and wave-vector resolution function with MCViNE, we use a virtual sample that has the138

same geometric shape and lattice parameters of the real sample to scatter neutrons in the vicinity139

of a particular set of momentum and energy transfer h,k, l,E. In the simulation we also take140

advantage of the measured UB matrix to orient the virtual sample just like what has been measured141

during the experiment. The virtual sample is also rotated around the vertical axis to a particular ω142

angle, similar to what happens in real measurements. The SEQUOIA detector system is simulated143

according to its specification such as the positions and orientations of all detector packs, the 3He144

tube radius, length, and its spacing in the detector pack, the pressure of 3He gas in the detector145

tubes, and the detector pixel height. Only events that arrive at the particular detector pixel and146

time-of-flight bin corresponding to the nominal h,k, l,E are collected. These detector events are147

6



then reduced to h̃, k̃, l̃ and Ẽ. Those h̃, k̃, l̃, Ẽ values center around the nominal h,k, l,E, as expected.148

The differences between those h̃, k̃, l̃, Ẽ from the nominal h,k, l,E are kept in a list of dh,dk,dl,dE.149

The Monte Carlo ray tracing approach captures details of the 4D resolution function including, for150

example, the asymmetrical energy dependent line-shape mentioned previously.151

FIG. 2. Example resolution functions for the 00L slice at q = L = 1.3, E = 5.0. The 2D resolution function

R(q,E) is first simulated by using MCViNE, and then fitted to an analytical function.

To decrease the complexity of the resolution modeling and convolution, we perform them in152

two dimensions along the two axes of a slice. The details of the convolution will be presented later153

in this manuscript. We calculate a list of dq from the saved list of dh,dk,dl, where q is along the154

high-symmetry Q direction of the slice of interest. The dq,dE events are then histogrammed into155

a profile of the point spread function (PSF) for the 2D slice. This procedure is repeated for the156

points on a grid on the (q,E) plane. Each PSF at one grid point is fit to a sheared 2D function,157

with one axis which is ”energy-like" and has an asymmetric shape, and another axis which is158

”momentum-like" and modelled as a gaussian. An example of this parameterization is presented159
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in Figure 2. Then an interpolation of the fitted parameters allows us to calculate the PSF function160

at any point in the q,E space.161

Before convolution, the scattering intensities of the dispersion model are first integrated along162

the two Q directions perpendicular to the q direction for the slice of interest. Then the integrated163

data is convolved with the 2D resolution function modelled earlier to obtain the convoluted slice.164

This convolution method is a good approximation of the full 4D convolution, and an example is165

shown in section III B to demonstrate that.166

C. Correction of dispersions167

The basic idea here is to compare the two slices, namely the experimental slice (Figure 1A) and168

the resolution-convolved modelled slice (Figure 1F), to find the displacements between the disper-169

sions in the two images which can then be used to correct the model. Finding displacements (or170

disparity) in two images has been a long-standing challenge in image processing. Stereo imaging171

techniques that uncover depth information of a scene captured in two images by finding disparity172

field between the images have been reviewed multiple times during the last few decades29–31. The173

techniques in traditional stereo vision find the disparity field d(x,y) that minimizes the difference174

between the left image (image taken by a camera on the left) and the right image (image taken by175

a camera on the right) warped by the disparity:176

argmind(x,y)∑
x,y

∣∣ Il
(
x, y
)
− Ir
(
x, y−d(x, y)

)∣∣ . (2)177

Used in this formula is the sum of the absolute differences, but often the sum of square differ-178

ences, or normalized cross correlation are also used. Il(x,y) and Ir(x,y) are left and right image179

intensities, and d(x,y) is the displacement along y. Local methods for dense disparity calculation180

minimize cost functions (Equation 2) for local patches, while global methods32,33 and semi-global181

methods34 take the smoothness of disparity into account by constraining the disparity d(x,y) us-182

ing regularization. Advancements in computing techniques for disparity calculation have been183

proven useful in many fields of quantitative research, including remote-sensing and geophysics35.184

We aim to reuse the disparity calculation technique to estimate the displacement field between185

the experimental slice and the resolution-convolved model slice. In this first demonstrative work186

for application of image disparity calculation in the data analysis of neutron scattering measure-187

ments, we simplify the problem by limiting the slice to only one visible dispersion; therefore,188
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the displacement field can be simplified to be independent of E, and the minimization problem189

becomes190

argmin∆E(q) ∑
q,E
|Iexp(q,E)− Imodel(q,E−∆E(q))|. (3)191

The simplification of limiting the displacement field to be independent of E makes this optimiza-192

tion problem straightforward to program by using a SciPy36 optimizer, for example.193

III. RESULTS194

A. The example dataset195

In this work we illustrate the super-resolution dispersion technique using a synthetic dataset that196

resembles a real experimental dataset, for which the full analysis will be reported elsewhere37. In197

the experiment, a Mn3Si2Te6 single-crystal sample was measured at the SEQUOIA instrument3198

with incident energy Ei = 60meV in the high flux mode, and the sample was rotated at least 180199

degrees about the vertical axis, one degree per step, to cover a large volume in the reciprocal200

space. Slices along multiple high-symmetry directions show clear dispersions. The dispersions201

along those high-symmetry directions were obtained by finding centers of peaks in constant q202

cuts. They were fit to a Hamiltonian without on-site anisotropy, but which allows for anisotropic203

interactions for each of the exchange interactions to account for the spin-orbit coupling37
204

H =J1 ∑
〈i, j〉

[Sx
i Sx

j +Sy
i Sy

j +∆1Sz
i S

z
j]+205

J2 ∑
〈i, j〉

[Sx
i Sx

j +Sy
i Sy

j +∆2Sz
i S

z
j]+206

J3 ∑
〈i, j〉

[Sx
i Sx

j +Sy
i Sy

j +∆3Sz
i S

z
j]. (4)207

Here, {Ji} are exchange coefficients as shown in Figure 3 while {∆i} introduce anisotropy.208209

B. Synthetic data210

First we build a synthetic dataset for which we know the exact model and parameters for the dis-211

persion surface. The synthetic dataset is obtained from a virtual neutron experiment performed by212

using the MCViNE software. MCViNE contains a scattering kernel that scatters neutrons accord-213

ing to a dispersion surface that a user can define by using arbitrary analytical functions22,23,28.214
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FIG. 3. The magnetic structure of Mn3Si2Te6 and the exchange couplings between magnetic sites. The

red and blue arrows follow the easy-plane directions of the spins in the ordered phase. The exchange J1

is between the second nearest neighbor and shown as blue lines between Mn sites. The exchange J2 is

between the first nearest neighbor and shown as yellow lines within the honeycomb layers of the Mn sites.

The exchange J3 is between the third nearest neighbor, and shown as dashed green lines, which are only

drawn for one portion of the lattice for clarity of the figure

Therefore, an analytical dispersion function similar to the dispersion surface of the spinwave215

model defined by Equation 4 was employed. The spin coupling constants used in the spinwave216

model in Equation 4 were J1 = 1.663meV, J2 = 0.477meV, J3 = 0.835meV, ∆1 = 0.390, ∆2 =217

−0.554, ∆3 =−0.431. Analytical functions were used to approximate the dispersion and scatter-218

ing intensity in the vicinity of the (002) wave-vector, and they were parameterized as219

E(h,k, l) = Eb +Ea

{
(1+0.61sin2

πh)(1+0.61sin2
πk)(1+ sin1.6 πl

2
)−1

}
(5)220

S(h,k, l) = S0
1

1+
(

h
Γh

)2
1

1+
(

k
Γk

)2
1

1+
(

l−2
Γl

)2 (6)221

where Ea = 11.6 meV, Eb = 9.05 meV, S0 = 14.8, Γh = Γl = 0.38 r.l.u., Γk = 0.35 r.l.u.222

Then we performed a virtual experiment of a sample with this analytical dispersion function and223

scattering intensity using MCViNE. The simulation and data reduction consists of the following224

steps:225

• Beam simulation. We can reuse the beam simulation performed earlier for the resolution226

calculation as it contains all the information regarding the instrument.227

• Sample scattering simulation. The sample has the same geometrical shape as the real sam-228

ple, and with the dispersion defined in Equation 6. Simulations with a series of ω rotation229

10



angles are performed, matching the real experiment.230

• Detector simulation. The scattered neutrons are intercepted by the virtual SEQUOIA de-231

tector system, and the neutron events detected are saved in NeXus files, one for each ω232

angle.233

• Reduction. The Mantid software8 is then used to reduce the NeXus data files in the same234

way as the real experiment, and corresponding slices are made.235

FIG. 4. Dispersion corrections for the virtual experimental data

Once we have the virtual experimental data, we perform the super-resolution workflow outlined236

in Figure 1 upon it. The results are shown in Figure 4. The corrected dispersion shows clear237

improvement in agreement with the model dispersion curve, compared to the original dispersion238

obtained directly from the experimental slice. The root-mean-square(RMS) difference between239

the experimental dispersion data and the model dispersion data was reduced from 1.59 meV to240

0.32 meV, showing a nearly 5-fold improvement. It is worth noting that the nominal resolution241

of the SEQUOIA instrument at Ei = 60meV for the high-flux mode is ∼2meV. The fact that one242

single iteration of our super-resolution workflow can improve the dispersion data accuracy by 5-243

fold means our method is an efficient way to optimize dispersion model while taking into account244

the instrument resolution effect.245
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FIG. 5. 00L slices: (a) The 00L slice from the virtual experimental data obtained through the same data

reduction procedure as the real experimental data using Mantid. (b) The analytical model using parameters

fitted to the dispersion data obtained directly from the virtual experimental data, convolved by instrument

resolution using the procedure explained in Section II B. (c) The analytical model using parameters fitted to

the corrected dispersion data, convolved by instrument resolution. (d) The residual of subtracting the virtual

experimental slice by the original dispersion model convolved with instrument resolution. The root mean

square (RMS) of the residual is 10.8. (e) The residual of subtracting the virtual experimental slice by the

corrected dispersion model convolved with instrument resolution. The RMS of the residual is reduced to

6.4.

Another way to check the improvement of the dispersion data is to observe the improvement of246

the fitting parameters in Equation 6. Table I presented the model parameters for the exact model,247

the fitted model without resolution correction, and the fitted model with resolution correction.248

Without the correction, we obtained Ea = 12.93meV and Eb = 9.53meV while fitting the disper-249

sion data to Equation 6. Compared to the exact values of Ea = 11.6meV and Eb = 9.05meV, the250

fitted values are off by 1.33meV and 0.48meV, respectively. After correction, the fitting results are251
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TABLE I. Dispersion model parameters

Model Ea (meV) Eb (meV)

Exact 11.6 9.05

Without resolution correction: fit to dispersion data di-

rectly obtained from virtual experiment

12.93 9.53

With resolution correction: fit to corrected dispersion data 11.80 8.78

Ea = 11.80 and Eb = 8.78, and the errors are reduced to 0.20meV and 0.27meV.252

An intuitive illustration of the improvement of the quality of the dispersion model is also pre-253

sented in Figure 5. Here, Figure 5(a) is the 00L slice obtained from the virtual experiment data.254

Figure 5(b) is the resolution-convolved slice obtained from the dispersion model fitted to the orig-255

inal dispersion data from the virtual experiment without correction. It is clear that the dispersion256

is shifted upward in comparison to the virtual experimental data in panel (a). Figure 5(c) is the257

resolution-convolved slice obtained from the dispersion model fitted to the corrected dispersion258

data, and this slice agrees much better with the experimental slice in panel (a). This agreement is259

also a validation of our resolution convolution procedure. The better agreement of the corrected260

disperion model with the virtual experimental data is also evident in the residual plots shown in261

panel (d) and (e).262

C. Real experimental data263

We also applied the super-resolution dispersion workflow on the experimental SEQUOIA264

dataset described in section III A. In the previous section for the virtual experimental data, we265

apply the super-resolution procedure to one single slice. In comparison, for the real experimental266

data, we treat multiple slices along different Q directions. The first step of the workflow remains267

the same; the dispersion data for each slice is first obtained without considering the resolution268

effect. Then these dispersion data from multiple slices are fitted to the spin-wave model simulta-269

neously to obtain the original set of the model parameters. The fitted model provides dispersion270

curves and scattering amplitudes for every slices, and they are convolved with resolution func-271

tions to obtained modelled slices. Each modelled slice is then compared to the corresponding272

experimental slice to obtain disparity curves, which are used to correct the dispersions. The cor-273
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FIG. 6. Dispersion corrections for the real experimental slice along 00L near 002.

rected dispersions of all interested slices are then fit to the spin-wave model simultaneously again,274

yielding a new set of model parameters. One example of the dispersion correction is presented in275

Figure 6 for the 00L dispersion. Energy corrections in the order of 1meV are found near 002. The276

full dispersion correction data are reported elsewhere 37.277

IV. CONCLUSION278

A new technique to obtain super-resolution dispersions along high-symmetry Q directions for279

single crystal measurements employing direct geometry neutron spectrometers is developed. This280

is done by computing the disparity curve between the resolution-convolved-model slice and the281

experimental slice and then applying the disparity to correct the dispersion. Here the resolution-282

convolved slice was obtained by convolving the resolution with the scattering intensity of a dis-283

persion model that was fit to the experimental dispersions obtained without any consideration of284

instrument resolution. The disparity of the slices was obtained by minimizing the difference be-285

tween the experimental slice and the modelled slice warped by disparity, subjecting to the total286

variation regularization. The technique clearly shows improvements in the determination of dis-287

persions and it is computationally faster, since classical methods would have required multiple288

iterations of model evaluation and resolution convolution with many more sets of model parame-289
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ters. We show that this method can achieve 5-fold super-resolution w.r.t nominal resolution of the290

SEQUOIA38 instrument. The demonstration is facilitated by a MCViNE-based virtual experiment,291

which provides the virtual experimental data and the known target model to check the effectiveness292

of the super-resolution technique.293

This super-resolution dispersion technique is limited by the signal-to-noise ratio as other imag-294

ing techniques. The 2D resolution convolution method used in this work can be updated to use295

4D resolution convolution to improve the accuracy and the universality of this approach. More296

sophisticated disparity computation techniques can be adapted to remove the limit of single dis-297

persion per slice. Finally, many image processing techniques may find various applications in298

neutron data analysis. Another potential application of the disparity calculation technique is to de-299

tect super-resolution variations in dispersions w.r.t temperature/pressure under which the sample300

is measured.301

This work focuses on the correction of the dispersion relation E(q) between the excitation302

energy E and its momentum q. It can be envisioned that the super-resolution techniques developed303

in the previous work for powder DGS data14 can be extended and combined with techniques304

developed in this work to reconstruct super-resolution I(q, E) slices, reducing the influence of the305

instrument broadening, and providing information on the intrinsic line-widths of the excitations,306

ΓE(q).307
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